Please check the examination details below before entering your candidate information

Pearson Edexcel International GCSE

Monday 7 January 2019

Morning (Time: 1 hour 30 minutes)	Paper Reference 4MB0/01R

Mathematics B
Paper 1 R

You must have: Ruler graduated in centimetres and mill
protractor, compasses, pen, HB pencil, eraser, calculator.
Tracing paper may be used.

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.

Information

- The total mark for this paper is 100
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.
- Without sufficient working, correct answers may be awarded no marks.

Pearson

Answer ALL TWENTY SEVEN questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1 Adam's weight is 190 pounds.
Given that 1 pound $=0.454$ kilograms, calculate Adam's weight in kilograms.

2

Diagram NOT accurately drawn

cm

3 Factorise completely $3 a^{5} b^{5}-6 a^{3} b^{6}+15 a^{2} b^{7}$

4 Express $\frac{31}{362}$
(a) as a decimal to 3 decimal places,
(b) as a decimal to 3 significant figures.

5 Two sets, A and B, are such that

$$
\mathrm{n}(A)=42 \quad \mathrm{n}(A \cup B)=60 \quad \mathrm{n}(A \cap B)=17
$$

Find $\mathrm{n}(B)$

6 Find the Lowest Common Multiple (LCM) of 42, 60 and 66

7 Tang received \$338 in pay after 35% had been deducted for tax.
Calculate Tang's pay, in \$, before the tax had been deducted.

8 Here are the first six terms of a sequence.
$\begin{array}{llllll}41 & a & 15 & 2 & b & -24\end{array}$
Find the value of a and the value of b.

$$
a=
$$

$$
b=
$$

(Total for Question 8 is 2 marks)

9

Diagram NOT
accurately drawn

In the diagram, $A B$ represents a vertical cliff of height 65 m .
The point C, on the boat, is on the surface of the sea such that the angle of depression of C from A, the top of the cliff, is 35°

Calculate the distance, in m to 3 significant figures, of C from B, the bottom of the cliff.
$10 A$ and B are two similar solids.
The surface area of the base of solid A is $324 \mathrm{~cm}^{2}$
The surface area of the base of solid B is $441 \mathrm{~cm}^{2}$
Given that the height of solid A is 9 cm , calculate the height of solid B.

11 Make a the subject of $d=\frac{b c d}{a}-\frac{b^{2}-a}{a b}$
Show clear algebraic working and give your answer as a single fraction.

12 (a) On the Venn diagram, shade the set $A \cap B$

(b) On the Venn diagram, shade the set $B \cap C^{\prime}$

(c) On the Venn diagram, shade the set $A \cap B \cap C^{\prime}$

13

Diagram NOT accurately drawn

14

The diagram shows a circle $A B C D$ where the line $P A Q$ is the tangent to the circle at A.

$$
\angle D A Q=70^{\circ} \quad \angle A B C=110^{\circ} \quad \angle B C D=100^{\circ}
$$

Giving your reasons, find, in degrees, the size of $\angle B A C$.

15 The times taken, in seconds, by 65 athletes to run 400 metres were recorded. No athlete took less than 46.0 s and all athletes took less than 50.0 s .

The incomplete table and histogram give information about the times taken by these athletes.

Time $(\boldsymbol{t}$ seconds)	Number of athletes
$46.0 \leqslant t<46.5$	10
$46.5 \leqslant t<47.5$	
$47.5 \leqslant t<48.0$	20
$48.0 \leqslant t<50.0$	

Complete the table and the histogram.
(Total for Question 15 is 4 marks)

16

The diagram shows the circle $A B C D$.
The chords $A C$ and $B D$ intersect inside the circle at the point X such that

$$
A X=10 \mathrm{~cm} \quad B X=6 \mathrm{~cm} \quad X D=4 \mathrm{~cm} \quad \angle A X D=120^{\circ}
$$

Calculate
(a) the length, in cm , of $X C$,
(b) the area, to the nearest cm^{2}, of triangle $A X B$.

17 Solve the simultaneous equations

$$
\begin{aligned}
& 2 x+9 y=8 \\
& 3 x+2 y=1
\end{aligned}
$$

Show clear algebraic working.

$$
\begin{aligned}
& x= \\
& y=
\end{aligned}
$$

18 The numbers of journeys made from a station on Monday, on Tuesday and on Wednesday one week were recorded.

The number on Monday to the number on Tuesday to the number on Wednesday $=5: x:(2 x-5)$ The number of journeys on Tuesday was 544 and the number of journeys on Wednesday was 408
(a) Find the value of x.

$$
x=
$$

(2)
(b) Hence find the total number of journeys that were made from the station on Monday, Tuesday and Wednesday that week.

(2)

19

The diagram shows the rectangle $A B C D$.
(a) Construct the locus of all points inside the rectangle that are 5 cm from C.
(b) Showing all your construction lines, construct the locus of all points inside the rectangle that are equidistant from $A B$ and $D C$.

The region R consists of all the points inside the rectangle that are closer to $A B$ than to $D C$ and more than 5 cm from C.
(c) Show, by shading, the region R.

Label the region R.

20 (a) Find the set of values of x for which $-13 \leqslant 5 x-3<12$
(b) Represent on the number line below, the set of values of x for which $-13 \leqslant 5 x-3<12$

(1)
(Total for Question 20 is 5 marks)

21 Here are the weights, in kilograms, of 12 children.

19	25	28	21	22	21	26	28	24	20	29	28

Calculate
(a) the median weight,
kg
(b) the mean weight.

22 Given that $\frac{75^{3 n} \times 3^{2\left(n^{2}-5 n\right)} \times 5^{2(1-3 n)}}{45^{2}}=3^{y}$
show that $y=2 n^{2}-7 n-4$
Show clear algebraic working.

23 The surface area of a sphere of radius $x \mathrm{~cm}$ is equal to the area of a square of side $(1-x) \mathrm{cm}$.
(a) Show that x satisfies $x^{2}(4 \pi-1)+2 x-1=0$
(b) Hence, or otherwise, find an expression for x in terms of π.

You must explain why you have chosen the expression and simplify the expression.

$$
\mathbf{A}=\left(\begin{array}{ll}
1 & 1 \\
3 & x
\end{array}\right) \quad \mathbf{B}=\left(\begin{array}{ll}
1 & 2 x \\
1 & 2 y
\end{array}\right)
$$

Given that $3 \mathbf{A}-2 \mathbf{B}=\left(\begin{array}{cc}1 & -5 \\ 7 & 26\end{array}\right)$
find the value of x and the value of y.

$$
\begin{aligned}
& x= \\
& y=
\end{aligned}
$$

25 (a) Simplify fully $\frac{20 x^{4}+26 x^{3}-6 x^{2}}{5 x^{2}-x}$

$$
y=\frac{20 x^{4}+26 x^{3}-6 x^{2}}{5 x^{2}-x} \quad x \neq 0 \quad x \neq \frac{1}{5}
$$

(b) Use your answer to part (a) to find $\frac{\mathrm{d} y}{\mathrm{~d} x}$

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}= \tag{2}
\end{equation*}
$$

26 A particle P is moving along a straight line. At time t seconds, the displacement, x metres, of P from a fixed point O on the line is given by

$$
x=4+7 t-2 t^{2} \quad t \geqslant 0
$$

At time t seconds, the velocity of P is $v \mathrm{~m} / \mathrm{s}$.
(a) Find an expression for v in terms of t.

In the interval $0 \leqslant t \leqslant 4, P$ is furthest away from O when P is at the point A on the line.
(b) Find the value of t when P is at the point A.
(c) Find the distance, in metres, of A from O.
metres
(d) Find the total distance, in metres, travelled by P in the interval $0 \leqslant t \leqslant 4$
metres

27 The point A is a distance of 12 km on a bearing of 060° from port P.
A ship starts at A and sails on a bearing of 150°. The ship sails for 48 minutes at a constant speed of $20 \mathrm{~km} / \mathrm{h}$ to point B.
(a) Draw a labelled diagram to show the information about the positions of P, A and B.

The diagram has been started for you below and you should show on the diagram the distances of P and B from A and the given bearings.
(b) Calculate the bearing, to the nearest degree, of P from B.

(4)
(Total for Question 27 is 7 marks)

TOTAL FOR PAPER IS 100 MARKS

